ACI Books & Book Chapters

Document Type




Download Full Text (286 KB)

Contributing USMA Research Unit(s)

Army Cyber Institute


The domain of cybersecurity is growing as part of broader military and security applications, and the capabilities and processes in this realm have qualities and characteristics that warrant using solution methods in mathematical optimization. Problems of interest may involve continuous or discrete variables, a convex or non-convex decision space, differing levels of uncertainty, and constrained or unconstrained frameworks. Cyberattacks, for example, can be modeled using hierarchical threat structures and may involve decision strategies from both an organization or individual and the adversary. Network traffic flow, intrusion detection and prevention systems, interconnected human-machine interfaces, and automated systems – these all require higher levels of complexity in mathematical optimization modeling and analysis. Attributes such as cyber resiliency, network adaptability, security capability, and information technology flexibility – these require the measurement of multiple characteristics, many of which may involve both quantitative and qualitative interpretations. And for nearly every organization that is invested in some cybersecurity practice, decisions must be made that involve the competing objectives of cost, risk, and performance. As such, mathematical optimization has been widely used and accepted to model important and complex decision problems, providing analytical evidence for helping drive decision outcomes in cybersecurity applications. In the paragraphs that follow, this chapter highlights some of the recent mathematical optimization research in the body of knowledge applied to the cybersecurity space. The subsequent literature discussed fits within a broader cybersecurity domain taxonomy considering the categories of analyze, collect and operate, investigate, operate and maintain, oversee and govern, protect and defend, and securely provision. Further, the paragraphs are structured around generalized mathematical optimization categories to provide a lens to summarize the existing literature, including uncertainty (stochastic programming, robust optimization, etc.), discrete (integer programming, multiobjective, etc.), continuous-unconstrained (nonlinear least squares, etc.), continuous-constrained (global optimization, etc.), and continuous-constrained (nonlinear programming, network optimization, linear programming, etc.). At the conclusion of this chapter, research implications and extensions are offered to the reader that desires to pursue further mathematical optimization research for cybersecurity within a broader military and security applications context.

Publication Date


First Page


Military and Security Applications: Cybersecurity (Encyclopedia of Optimization, Third Edition)



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.