United States Military Academy
USMA Digital Commons

West Point Research Papers

3-1-2019

Punch Cards to Python: A Case Study of a CS0 Core Course

Thomas Babbitt
United States Military Academy, thomas.babbitt@westpoint.edu

Charles Schooler
United States Military Academy, charles.schooler@westpoint.edu

Kyle King
United States Military Academy, kyle.king@westpoint.edu

Follow this and additional works at: https://digitalcommons.usmalibrary.org/usma_research_papers

b Part of the Curriculum and Instruction Commons, Other Computer Sciences Commons, Programming
Languages and Compilers Commons, and the Science and Mathematics Education Commons

Recommended Citation

Thomas Babbitt, Charles Schooler, and Kyle King. 2019. Punch Cards to Python: A Case Study of a CS0
Core Course. In Proceedings of the 50th ACM Technical Symposium on Computer Science Education
(SIGCSE '19). ACM, New York, NY, USA, 811-817. DOI: https://doi.org/10.1145/3287324.3287491

This Conference Proceeding is brought to you for free and open access by USMA Digital Commons. It has been
accepted for inclusion in West Point Research Papers by an authorized administrator of USMA Digital Commons.
For more information, please contact dcadmin@usmalibrary.org.

https://digitalcommons.usmalibrary.org/
https://digitalcommons.usmalibrary.org/usma_research_papers
https://digitalcommons.usmalibrary.org/usma_research_papers?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/786?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/800?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@usmalibrary.org

Punch Cards to Python: A Case Study of a CS0 Core Course

Thomas Babbitt Charles Schooler Kyle King
United States Military Academy United States Military Academy United States Military Academy
West Point, New York West Point, New York West Point, New York

thomas.babbitt@westpoint.edu

ABSTRACT

There is an immense interest in teaching computer science con-
cepts - and programming specifically - to everyone. The United
States Military Academy at West Point has required every student,
regardless of major, to pass a computer science zero (CS0) course
for the last 50 years: From punch cards to Python. We present a
history of our CS0 course and the lessons learned from the most
recent redesign of the course. We review the last decade of student
assessments and how they influenced the latest iteration.

We contrast the expectations of students in a CS0 course with
those in a CS1 course. We discuss the national efforts to make CS
accessible to all and explore the challenges unique to a CS0 course.
We demonstrate similarities between our course and the Advance
Placement CS Principles and show where differences are justified.
We review the relevant pedagogical research for CS0 and present
lessons learned over multiple iterations of the course.

Based on our current course review and implementation, we be-
lieve that Computer Science for everyone is attainable and relevant
to the needs of every student.

CCS CONCEPTS

« Social and professional topics — Computer science edu-
cation; Computational thinking; Model curricula; CS1; « Applied
computing — Interactive learning environments;

KEYWORDS

Undergraduate Education, Computer Science Education, program-
ming, programming tools, computational thinking

ACM Reference Format:

Thomas Babbitt, Charles Schooler, and Kyle King. 2019. Punch Cards to
Python: A Case Study of a CS0 Core Course. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education (SIGCSE ’19), February
27-March 2, 2019, Minneapolis, MN, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3287324.3287491

1 INTRODUCTION

Interest in computing education for everyone has grown rapidly in
the last few years. In 2016, the White House launched the Computer
Science for All initative [38], a large-scale effort to support pre-K
through 12th graders using local and state programs. The CS for All
initiative is maintained today through the National Science Foun-
dation (NSF) and already has awarded over 200 grants [8]. In 2017,

This paper is authored by an employee(s) of the United States Government and is in
the public domain. Non-exclusive copying or redistribution is allowed, provided that
the article citation is given and the authors and agency are clearly identified as its
source.

SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA

2019. ACM ISBN 978-1-4503-5890-3/19/02.

https://doi.org/10.1145/3287324.3287491

charles.schooler@westpoint.edu

kyle king@westpoint.edu

the first Advanced Placement Computer Science Principles (AP
CSP) exams were administered. The AP CSP is a multidisciplinary
computing course with seven focus areas: Creativity, Abstraction,
Data and Information, Algorithms, Programming, The Internet, and
Global Impact [6].

Today, most colleges offer an introduction to Computer Science
course (CS0) geared toward students outside the computing disci-
pline. There is little consensus on the role of computer programming
in a CSO course, with some courses focusing exclusively on pro-
gramming but others focusing on programming concepts instead
of programming itself [33]. For the last 50 years, every student
at West Point has been required to learn computer programming.
Since 1989, it has been as part of the school’s compulsory CS0
course. We believe that programming occupies a central role in
computing literacy and thus about a third of our CS0 focuses on
programming instruction.

This paper discusses the history of our CS0 course, reviews the
challenges in teaching computer programming to novices, explores
the current best-practices in programming instruction, analyzes the
last decade of student feedback for our institution’s CS0 course, and
enumerates the most valuable lessons learned in the most recent
curricula redesign.

We assert that CS0 should be a requirement for all college stu-
dents. While programming instruction is inherently challenging,
we maintain that a CS0 education is attainable for everyone.

2 BACKGROUND

This section explores the challenges of teaching computer science
concepts, specifically programming, to novice programmers and
explores the current thinking and best practices for teaching a
CS0/CS1 course.

2.1 History of CS0 at Our Institution

West Point’s CS0 course has changed a number of times over the
past 30 years (see Figure 1). Prior to 1989, a required course taught
anumber of different programming languages including FORTRAN
with punch cards. Starting in 1989, with the restructuring of depart-
ments, a designated CS0/CS1 course was implemented and required
for all students. The course focused exclusively on programming
and problem solving and was similar to an introduction to Com-
puter Science (CS1-level) course taught at most universities. The
course was originally based on Turbo Pascal, which was popular
at the time. The documentation on why the language was chosen
is lost; however, it is worth noting that the AP Computer Science
A/AB at that time also used Turbo Pascal.

In 1996, the programming language changed to Ada 95 in order
to align with other CS courses taught at our institution. In 2001,
the course switched to Java.

https://doi.org/10.1145/3287324.3287491
https://doi.org/10.1145/3287324.3287491

1989 1996 2001

2007 2012 2018 2020

Turbo Pascal

Ada 95 Java

Raptor/Java Jython/JES Python/Sculpt

Figure 1: Course Time Line

In 2007, the course transitioned to Raptor with Java [9]. While
the functionality is different from MIT’s Scratch [33], many of the
concepts are similar. It uses flow charts to solve a problem and
generates much of the Java code for the student. The focus was
on the concepts and problem-solving process which reduced the
emphasis on programming.

In 2012, a pilot course using Jython [15] ran and was imple-
mented the next year. This course used a multimedia approach [12,
14, 25]. It increased the emphasis on programming concepts, but
maintained the rigor in networks, security, hardware, and ethics.

The most recent redesign, piloted in 2018, transitioned students
to a Javascript (Skulpt) Python 3 implementation. The course mate-
rial for the programming section borrow heavily from the Think
Like a Computer Scientist text on Runestone Academy [26]. Section 3
provides details on the most resent course redesign.

2.2 AP CS Principles Overview

The AP Computer Science Principles (AP CSP) course covers six
computational thinking practices: connecting computing, creating
computational artifacts, abstracting, analyzing problems and ar-
tifacts, communicating, and collaborating. There are seven "Big
Ideas": creativity, abstraction, data and information, algorithms,
programming, the internet, and global impact [6, 20, 28]. Each "Big
Idea," has a number of enduring understandings, learning objec-
tives, and essential knowledge. In Section 3.1.1, we discuss how our
course overlaps with AP CSP.

2.3 CS0 vs CS1 Expectations

The expectations of a CSO course are different from those of a
CS1 [10]. The AP CSP course is described as an introductory com-
puting course [6], which we would consider a CS0. CS1 courses
go into more depth on subjects that are germane to only those
students who will pursue a Computer Science degree. Some exam-
ples of this include: introduction to data structures, object-oriented
programming, and inheritance [7, 36].

Since programming is a "Big Idea" in AP CSP it should be in a CSO
course. Additionally, there should be an expectation of networking,
cyber, and hardware lessons in a CS0 versus a CS1 course. We
include all of these concepts in our redesigned course.

2.4 Relevant Pedagogical Research

Before embarking on the latest redesign of our CS0 course, we
conducted a literature review. Based on the review, Problem Based
Learning (PBL) [17, 37] and Worked-Out Examples [21, 30] were
the best options.

The Jython Environment for Student (JES) [12, 15] version uses a
PBL approach to teach programming. Students are given instruction

and then directed to apply their knowledge to challenges, typically
homework problems. Course scaffolding includes detailed discus-
sion on picture objects with properties such as height, width, pixel
coordinate, and color values. Students are taught basic program-
ming constructs such as conditionals and iteration. Then students
were expected to apply the programming constructs such as se-
quence, iteration, and selection to effect changes to a picture.

From the literature and the collective experience of the course
designers, we decided to move to a worked-out examples approach
in our new course in which we dedicate a large portion of the class
to "walking" students through example problems. Examples give
students a place to start and provide the recurring aspects of a task.
Worked-out examples help novices reach early successes without
cognitive overload, i.e. excessive stress [21].

Once the novice programmer has acquired a baseline set of re-
curring aspect knowledge and some rudimentary problem solving
skills, instruction can transition from product-based to process-
based worked-out examples. Product-based worked-out examples
consist of only the recurring knowledge such as how to assign a
variable. Process-based worked-out examples add in the how and
the why, such as the realization that a variable is a location in mem-
ory with a particular value. This improves the novice programmer’s
problem solving skills and helps transfer these skills to high order
problems and other domains.

Fading is the key to making novice programmers self-sufficient.
Forward fading consists of removing the first part of the problem and
letting the novice programmer solve the problem by providing the
solution. Backwards fading provides the beginning of the problem
and the novice programmer completes the problem [41].

There are also extraneous difficulties in learning to program,
such as an Integrated Development Environment (IDE) or com-
piler/interpreter. These programs can be unintuitive to the novice
and may contribute to the cognitive overload that novices experi-
ence in learning to program [5].

2.5 General Purpose Languages

Hiding the details of program execution makes beginner languages
more accessible to novices. Beginner languages like MIT’s Scratch [33]
feature drag-and-drop interfaces for programming constructs like
for loops and function declarations. There is research that suggests
that using a beginner language is appropriate for a CS0 course [13];
however, some experiences suggest that beginner languages are
limited in their utility for solving real-world problems [18].

2.6 Historical CS1 Failure Rates

The general consensus is that introductory programming courses
are difficult [16, 39, 40]. In fact, CS1 courses have both the highest

Distribution of Final Grade

40%
30%

w I l
10%
clom o=
F D C B A

Figure 2: Historical CS1 Grades [34]

enrollment rates and the highest dropout rates at many schools [23,
24, 35]. Study after study indicates that students in introductory
programming courses will generally fall into one of two groups: a
highly successful group and a failing group [31, 32, 34]. Generally
there are very few students in between. The most common grade
in a CS1 course is an "F" followed by an "A" (Figure 2) [34].

The distribution of IQ across the general population is, by defi-
nition, a normal distribution. We asked ourselves, if student per-
formance in an introductory programming course is a function of
intelligence, why doesn’t student performance exhibit the same
distribution as IQ? Our research shows that student grades are not
a function of cognitive capacity, development, or style; attitude
or motivation; demographic factors, such as previous exposure to
math or computers; or a number of aptitudes [34, 40].

Prior work argues that the highly integrated nature of the com-
puter programming splits learners into groups that either succeed
or fail [34, 40]. Computers have a multitude of components that
work simultaneously to perform a single task. Programs similarly
have a multitude of concepts that work simultaneously to gener-
ate the instructions for the completion of that task. The concepts
must be learned serially, but no individual concept makes sense in
isolation.

Since programming concepts are so integrated, a failure to un-
derstand one single concept makes it increasingly difficult to un-
derstand the next. Conversely, each idea that a student successfully
grasps provides more context for reasoning about additional con-
cepts. These students find programming concepts to be increas-
ingly complementary and intuitive and have a greater chance of
success [34, 40]. The result is one group of successful students
and a second group of comprehensively confused students. This
manifests in a bi-modal distribution of final grades.

Over the past seven years, the percentage of students who pass
our CSO course has been approximately 99%. Most years there
are over 1,100 students taking the course. Unlike the statistics in
the previous paragraphs, the AP CSP course has a passing rate of
72.7% for 2018 [4]. Passing is considered three or higher on the AP
exam. The percentage to earn the lowest grade of one in 2018 is
7.6%. Because we focus on many computing topics, a student that
struggles in programming does not automatically fail our course.

3 COURSE DESCRIPTION

Our redesigned CS0 course is divided into three modules: Hardware,
Software, and Cyber. Table 1 enumerates the topics in each module.
Each module is composed of roughly ten 75-minute lessons. The
redesigned course starts with hardware then transitions to software
with lessons covering operating systems, algorithms, and high level

programming languages prior to programming. The course culmi-
nates with discussions on networks, data, ethics, cyber security,
and cyber law & warfare.

This redesign commits much more time to hardware and cyber
concepts than did previous course iterations. Over the past few
years, the software module had slowly grown to give instructors
more time on the topic that students struggle with the most i.e.,
programming. However, our direct experience from last year’s
pilot argues that spending more time on hardware actually does
more to help students comprehend programming concepts than do
additional software lessons. We believe that ordering the hardware
lessons before the software lessons, and expanding the time spent
on hardware, together increase student understanding of computer
programming. We intend to collect the data necessary to explore
that hypothesis.

Each lesson is structured so that it begins with a short quiz on
the assigned reading to check knowledge and frame the discus-
sion [3, 22]. We discuss the lesson topic for about 20-30 minutes.
Every lesson concludes with a 15-20 minute in-class activity/worked
out examples (Section 2.4) when students apply or explore the les-
son concepts through some interactive activity. Importantly, in-
teractivity helps to solidify concepts and make them less abstract.
For example, during the robotics lesson, we watch a robot refine
its stored map as it navigates obstacles in the classroom. During
our web lesson, students manipulate a chat room using HTML,
Javascript, and cookies.

3.1 Key Decisions

There were a number of key decisions made in redesigning the
course: to keep it a CSO instead of a CS1 course, to use a high level
language instead of a beginner language, and to ensure a large
overlap with the AP CS Principles course.

3.1.1 Use AP CS Principles as a model. Our course has a large
overlap with the AP CSP course. We cover approximately 84% of
the learning outcomes. The lesson topics to CS Principle "Big Ideas"
crosswalk are found in Table 1. See Section 2.2 for an overview of
AP CSP.

The major area where our course differs from the AP course is a
reduced emphasis on collaborative work (a AP CSP computational
thinking practice). While there are opportunities to collaborate,
graded events are almost exclusively individual. Second, we also
reduced emphasis in the Data and Information "Big Idea" in favor
of other topics.

There are two concepts we think are important albeit slightly
outside of the scope of the AP CSP. The first is hardware; we spend
quite a bit of time discussing the hardware in a computer, then use
an Arduino and robots to help solidify the concept. The second
important concept is Cyber Law and warfare.

3.1.2 Follow CS0 Expectations. Trying to model our CSO course
after the typical CS1 courses is not feasible. As a compulsory course
for mostly non-Computer Science majors, the design of a CS0 course
is, and ought to be, different from a CS1 course. Our course trades
a rigorous programming education for more breadth across IT
topics [1]. However, we believe that their exposure in our CS0

Hardware

Software

Cyber

Our Lesson Topics

AP CSP "Big Ideas"

[Our Lesson Topics

AP CSP "Big Ideas"

l

Our Lesson Topics

AP CSP "Big Ideas"

Computers Abstraction OS and File Sys- Abstraction WWwW Internet; Global Im-
tems pact
Encoding data Abstraction Algorithms Algorithms The Internet Internet
CPU Abstraction Languages Abstraction Data & Ethics Data; Global Impact
Analog to Digital Abstraction Variables and Ex- Abstraction; Pro- | Threats in Cy- Abstraction; Inter-
Conversion pressions gramming berspace net; Global Impact
Sensor Lab: Ar- Creativity Turtle Graphics & Creativity; Abstrac- | Cybersecurity Internet; Global Im-
duino Modules tion pact
LANs Internet Functions; Selec- Programming Cyber Law & War- Global Impact
tion; Iteration fare
Robots & Drones Abstraction; Global | Software Develop- Programming

Impact

ment; Debugging

Table 1: Our Lesson Topics Crosswalk the AP Computer Science "Big Ideas"

course sets a solid foundation for students that are interested in
doing more in that domain.

3.1.3 Use Updated and Online Textbooks. We use three textbooks
for our new course. The first is Understanding the Digital World [19]
which covers hardware, the internet, privacy, and security. The sec-
ond is How to Think Like a Computer Scientist online book (thinkc-
spy) on the Runestone Academy website [26]. The thinkcspy "book”
embeds course material, videos, and knowledge checks along side
executable programming challenges. This approach is well doc-
umented in [2, 27]. The third is an arduino uno that we use for
labs.

The course textbook becomes stale over time (see Section 4.1).
Defenses against this are readily available. Using a newer book
for the non-programming portion facilitates up-to-date instruction
on many of the non-programming AP CSP "Big Ideas." An on-line
interactive book for programming can be modified each semester
to help keep the course interactive and fresh.

3.1.4 Use of a General Purpose Language. We chose to use a general
purpose language, specifically Python. Python is a popular language
with a minimal syntax that is readily used to solve a variety of real-
world problems. This real-world utility is limited by our choice to
use a JavaScript-based Python implementation. We use JavaScript
(Skulpt) so that we can integrate and assess students directly on
Blackboard, our web-based LMS. Skulpt is not a complete Python
implementation, it does not support C extensions, and it runs in a
browser instead of a traditional operating system. Skulpt works well
for our purposes, but limits students’ ability to leverage external
libraries and execute examples they find online.

Ideally, we want the simplicity of a beginner language, such as a
simple web-based editor, with the power and utility of a general-
purpose language, so that students can use their knowledge more
directly to solve real-world problems.

3.1.5 Ensure Interactive Feedback. Students struggle to understand
how to combine the many components of a language into a mean-
ingful program. To reduce the amount of students’ time spent on
syntactic errors, we’ve configured our editor to detect and provide

feedback on most syntactic errors. Programming challenges in the
new course are accompanied by a battery of unit tests. This gives
immediate and detailed feedback to the student each time the pro-
gram is executed and reduces cognitive load [29]. For instance, if a
student must define a function that adds two numbers together, the
unit tests will verify that they’ve defined a function, the function is
named correctly, the function takes two arguments, and the func-
tion leverages the addition operator and a return statement, and
that the function returns the correct value given two numbers.

We can achieve a high-level of interactivity for programming
questions through Runestone Academy’s unit tests. If unit tests
have been defined for a question, then students receive immediate
feedback on issues with their code. A robust set of tests for code
will edge students toward solving a problem on their own.

This immediate and detailed feedback has been crucial in the
early programming lessons in helping students diagnose their pro-
grams’ errors. We've found that these unit tests greatly reduce the
time students spend randomly trying new approaches in the hope
that something will work.

3.2 Transitioning to Web-Based Instruction

For the pilot course offering, we explored various web-based pro-
gramming platforms. Computer programming is increasingly mov-
ing to the web. Platforms like Microsoft’s Azure Notebooks, Binder,
Trinket, and CodeEnvy provide programming environments and de-
velopment tools through a web browser. These programming tools
have the benefit of being accessible from any Internet-connected
device.

An online book eliminates the need for students to install and
learn a programming tool, like JES [15]. Every student is already
intimately familiar with how to use a web browser, and a web-based
environment is much less intimidating for a novice programmer.

3.2.1 Usean Interactive Web-Based Programming Environment (Gad-
get). Our Gadget (Figure 3) incorporates the look and feel of trin-
ket.io’s Trinket with Runestone’s Python 3/Skulpt code evaluation
engine. Gadgets are hosted directly within Blackboard and, like
Runestone, allow students to write and execute code within the

P ¥ © S £ aA

<> mainpy tests.py Result

1 import math QO Nameis at top of file

def add(a,b):
return float(a+b)|

(<]

Code prints ""Sum: 4.0"

2
e
4
5 . .
6 a = fleat(input("First number to add:")) o Code defines function
7 b = float(input("Second number to add:")) add

8

9

print("Sum:", add(a,b)) @ Function add takes 2
arguments

@ add prints nothing

<]

Code contains a return

® .Advotnrnea £lnas

Figure 3: An IT105 Gadget incorporates the look and feel of
trinket.io’s Trinket with Runestone’s Python 3 code evalua-
tion engine

assigned reading webpage. Gadgets are also used for programming
assessment. We are able to create programming questions along-
side multiple choice, or other types of questions, when building a
Blackboard assessment.

Gadgets, like Trinkets, are built on the open-source Ace edi-
tor which detects syntax errors and provides syntax highlighting.
We created a robust unit-testing framework that makes it easy for
instructors to incorporate a wide variety of tests in their program-
ming questions. Gadgets also support sending code to the Python
Tutor website for visual debugging [11].

3.2.2 Addressing Limitations of Web-based Programming. Our ini-
tial pilot suffered from a severe lack of integration. The hardware
and cyber modules were hosted and accessed through Blackboard
but the software module was hosted and accessed through Rune-
stone. On top of requiring a second account for students, student
scores had to be regularly transferred between the two systems.

In the end, we ported the relevant lessons from How to Think Like
a Computer Scientist to Blackboard and created our own inline code
execution tool (see above). Integrating with Blackboard significantly
reduced the overhead of teaching programming across our nearly
30 offerings of the course. Unfortunately, the integration is not
native and gadgets are slow to load and don’t play well with other
tools in the Blackboard ecosystem, such as the Lockdown Browser.
We hope to see an LMS with a native code execution ability in the
future or another more seamless plugin framework for integrating
a code execution tool into a LMS.

4 STUDENT FEEDBACK ASSESSMENT

Figure 4 has three plots that show the results from the last decade of
end-of-course surveys. The number of respondents per year is listed
at the bottom (n). Each value statement on the end-of-course survey
uses a five-value "Likert" rating scale. The scores on the rating scale,
starting at one and ending at five, are: Strongly Disagree, Disagree,
Neutral, Agree, and Strongly Agree. The higher the value the more a
given student agrees with a particular statement. The vertical line at
AY13 represents the major revision of the course from Rapter/Java
to Jython depicted in Figure 1.

These results helped inform the decision to modify the course.
The statement topics fall into three general categories describing:
(1) textbook contribution (Figure 4a); (2) motivation (Figure 4b);

and (3) confidence in being able to use programming or technology
to solve future problems (Figure 4c).
The end-of-course survey value-statements are:

A6 My motivation to learn and to continue learning has in-
creased because of this course.

C6 The textbook and readings made a major positive contribu-
tion to how much I learned.

D1 Ilearned to think about the implications of technology as
a result of this course.

D4 If you have to learn a new piece of software that requires
you to program it, how confident are you that you can use
the software to solve your problem?

D5 How confident are you that you can learn and use a new
piece of information technology on your own?

Our CSO0 course was redesigned twice in the last decade, with
pilots running in academic years 2012 and 2018. They have signif-
icantly smaller sample numbers, n = 107 and n = 16 respectively
and results are annotated with pilot.

4.1 Textbook Utility

The statement with the largest downward trend for both the Rap-
tor/Java and Jython version of the course is the one based on the
perceived utility of the textbook (C6). Figure 4a illustrates the trend.
Students initially enjoy a new textbook but after a year or two that
level of satisfaction drastically reduces.

We cannot pinpoint the exact cause for the changes; however,
there are a number of reasons students’ satisfaction with the utility
of a textbook could wane over time. Some possible causes includes
the following: concern over the textbook cost, or the fact that all
students must take this core course, so over time the key focus
areas become known and free study guides replace the textbook.
Additionally, slides and in-class examples are actively incorporated
and the textbook is emphasized less by the instructors [3, 22]. In a
CSO0 course, like ours, a textbook falls behind current technologies
quickly. Due to the small sample size, the significant increase in
perceived utility for the online interactive textbook for the pilot in
2018 is not considered definitive.

4.2 Motivation

Proving relevance and engendering effort for a programming course,
for a History or Chinese-language major who sees minimal value
beyond graduation, is challenging. Table 4b shows the results for
question A6. Enthusiasm for a new version of the course initially
increases and then begins to drop. From 2008-2012 the values remain
relatively consistent with a slight drop in 2012. In 2013, there is a
significant drop, which corresponds to a transition year. The JES
focused course shows a similar trend starting in 2013. Motivation
initially increases for a few years and then shows a downward
trend.

The first year is likely lower because students’ older peers, who
took the previous version of the course, cannot assist in study.
It increases as the student body becomes more familiar with the
content and then declines once the content becomes too well known.
We speculate it is due to extensive familiarity with the course (as
when numerous examples are available for students to cut and
paste), staleness of tools, or predictability of instruction itself.

Mean Over Time, Textbook

Mean Over Time, Motivation

Mean Over Time, Confidence

4.15

44
!

Pilot / N .. Pilot .. .
RaptoriJava | Jython Z . 84 . Pijot
w0 | Question g |
3 g " -
—+— C6 S R
N J . \
N s
. 1 g 1 o -% -0 -0\
5 N [T 5 ; . § 31 o -
i I P .
g \] \ g . Pilo J/ . g . I~ e,
\) \ 8 | R Pilot ;N \
] - .
31 \ B ~., / o Question | pt | N
N S, & 7 ¥ . Pitot
\ ,’ \ s — —— D1 H o —® =0
- Y . N
Ty, . ° Question . ~e- D4 ‘.
\ < .
V! 5 | —+ A6 Plot & D5
N 3 N
& d Raptor/Java Jython ~ Raptor/Java Jython Pilot
n= 496 977 985 1148 911 884 943 803 423 966 649 8 —| n=496 977 985 1148 911 884 943 803 423 966 649 @ 7| n=496 977 985 1148 911 884 943 803 423 966 649
R R R T T T T T T T © T
AY08 AY10 AY12 AY14 AY16 AY18 AY08 AY10 AY12 AY14 AY16 AY18 AY08 AY10 AY12 AY14 AY16 AY18
Academic Year Academic Year Academic Year
(a) Textbook (b) Motivation (c) Confidence

Figure 4: End of Course Survey Results

4.3 Problem Solving Using Programming or
Technology

There are three survey statements related to problem-solving using
programming and technology (Figure 4c). Response levels for D1
remained consistently high over the past decade and focused on
awareness of technology. Today’s companies must take into account
the moral and ethical issues, as well as second and third order effects
of using technology. They must not be timid in learning or using
new technology in their day-to-day lives. Most students have grown
up in a ubiquitous technology world that likely contributes to this
consistency.

Items D4 and D5 relate to students’ confidence in their skills in
programming or in using technology to solve a problem. Both of
those statements have shown a downward trend over the past five
years. Reasons may include: relevance of the material, presenta-
tion methods, scaffolding, textbook, and tools used. Many of these
problems have been discussed herein previously.

5 LESSONS LEARNED

This section summarizes the most significant lessons learned through
our redesign. These lessons are discussed in details in the other
sections of this paper, but we enumerate them here so that it might
be a handy summary for other schools that are also looking to
implement or redesign their CSO courses:

Include programming instruction in a CSO course. There
is no consensus on the role of programming in a CS0 course. We
believe that programming is a central component of computer
literacy.

Include computer hardware instruction. Our initial pilot re-
sults strongly indicate that students with a firmer grasp of computer
hardware concepts will better absorb programming concepts.

Keep the textbook fresh. Our student assessments over the
last 10 years indicate that the value of a CSO textbook degrades
over time.

Use a general purpose language Use Python or JavaScript,
instead of a beginner language. While hiding the details of program

execution makes beginner languages more accessible to novices,
exposure to more challenging details may be necessary for the
student to advance beyond trivial program designs [39].

Make the course web-based. If using an LMS, it is best to
integrate programming. This reduces the context switch between
the course material and code execution. Many coding platforms
exist online so this approach doesn’t deprive students of a realistic
development environment.

Ensure there is interactive feedback. Immediate and detailed
feedback is crucial, especially in early programming lessons, to help
students diagnose programming errors.

Use the AP CS Principles Course as a guide. Every institu-
tion is different and its courses takes a unique approach; however,
the AP CSP is a standard measure of what a CS0 course should look
like. A good amount of overlap is desirable.

6 CONCLUSION

Our institution has been teaching Computer Science concepts and
programming to every student for over 50 years. As computing
becomes increasingly relevant to other disciplines, the need for
every student to have a basic understanding of computers and
computer programming will only increase. While the expectations
for students in a CSO course are lower than those in a CS1 course,
we believe that CSO0 is a valuable and necessary component of every
college student’s education. Decades of student assessment and
feedback support the conclusion that a college-level CS0 course
should be compulsory and grades indicate it is attainable for all.

ACKNOWLEDGMENTS

Special thanks to Dr. Suzanne Matthews for her assistance in shap-
ing and reviewing this paper. Her efforts significantly improved
the final version. The views expressed in this article are those of
the authors and do not reflect the official policy or position of
the Department of the Army, Department of Defense or the U.S.
Government.

REFERENCES

(1]

[10]

[11]

[12

[13]

[14]

[15

[16

[17]

(18]

[19

[20]

[21]

Kenneth L. Alford, Curtis A. Carter, Daniel J. Ragsdale, Eugene K. Ressler, and
Charles W. Reynolds. 2004. Specification and Managed Development of In-
formation Technology Curricula. In Proceedings of the 5th Conference on Infor-
mation Technology Education (CITC5 '04). ACM, New York, NY, USA, 261-266.
https://doi.org/10.1145/1029533.1029598

Christine Alvarado, Briana B. Morrison, Barbara Ericson, Mark Guzdial, and Brad
Miller. 2012. Performance and use evaluation of an electronic book for introduc-
tory Python programming. Technical Report GT-IC-12-02. Georgia Institute of
Technology.

Thomas Berry, Lori Cook, Nancy Hill, and Kevin Stevens. 2010. An Exploratory
Analysis of Textbook Usage and Study Habits: Misperceptions and Barriers to
Success. College Teaching 59, 1 (2010), 31-39. https://doi.org/10.1080/87567555.
2010.509376 arXiv:https://doi.org/10.1080/87567555.2010.509376

College Board. 2018. AP Score Distributions. https://apscore.collegeboard.org/
scores/about-ap-scores/score-distributions//

Paul Chandler and John Sweller. 1996. Cognitive Load While Learning to Use a
Computer Program. Applied Cognitive Psychology 10, 2 (Apr 1996), 151-170. https:
//doi.org/10.1002/(SICI)1099-0720(199604)10:2< 151::AID- ACP380>3.0.CO;2-U
CollegeBoard. 2017. AP® Computer Science Principles: Including
the Curriculum Framework. https://apcentral.collegeboard.org/pdf/
ap-computer-science-principles-course-and-exam-description.pdf ?course=
ap-computer-science-principles

Nell B. Dale. 2006. Most Difficult Topics in CS1: Results of an Online Survey
of Educators. SIGCSE Bull. 38, 2 (June 2006), 49-53. https://doi.org/10.1145/
1138403.1138432

National Science Foundation. 2018. Computer Science for All (CSforAll:RPP).
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=505359

John C. Giordano and Martin Carlisle. 2006. Toward a More Effective Visualization
Tool to Teach Novice Programmers. In Proceedings of the 7th Conference on
Information Technology Education (SIGITE 06). ACM, New York, NY, USA, 115-
122. https://doi.org/10.1145/1168812.1168841

Dee Gudmundsen, Lisa Olivieri, and Namita Sarawagi. 2011. Using Visual Logic®©:
Three Different Approaches in Different Courses - General Education, CS0, and
CS1. J. Comput. Sci. Coll. 26, 6 (June 2011), 23-29. http://dl.acm.org/citation.
cfm?id=1968521.1968529

Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-based Program Visu-
alization for Cs Education. In Proceeding of the 44th ACM Technical Symposium
on Computer Science Education (SIGCSE °13). ACM, New York, NY, USA, 579-584.
https://doi.org/10.1145/2445196.2445368

Mark Guzdial. 2003. A Media Computation Course for Non-majors. In Proceedings
of the 8th Annual Conference on Innovation and Technology in Computer Science
Education (ITiCSE "03). ACM, New York, NY, USA, 104-108. https://doi.org/10.
1145/961511.961542

Mark Guzdial. 2008. Education: Paving the Way for Computational Thinking.
Commun. ACM 51, 8 (Aug. 2008), 25-27. https://doi.org/10.1145/1378704.1378713
Mark Guzdial and Elliot Soloway. 2002. Teaching the Nintendo Generation to
Program. Commun. ACM 45, 4 (April 2002), 17-21. https://doi.org/10.1145/
505248.505261

Mark J. Guzdial and Barbara Ericson. 2016. Introduction to Computing and Pro-
gramming in Python, A Multimedia Approach (4th ed.). Pearson, Hoboken, NJ,
USA.

Filiz KALELIOGLU and Yasemin Giilbahar. 2014. The Effects of Teaching Pro-
gramming via Scratch on Problem Solving Skills: A Discussion from Learners’
Perspective. Informatics in Education 13, 1 (2014).

Judy Kay, Michael Barg, Alan Fekete, Tony Greening, Owen Hollands, Jef-
frey H. Kingston, and Kate Crawford. 2000. Problem-Based Learning for
Foundation Computer Science Courses. Computer Science Education 10, 2
(2000), 109-128. https://doi.org/10.1076/0899-3408(200008)10:2;1-C;FT109
arXiv:https://doi.org/10.1076/0899-3408(200008)10:2;1-C;FT109

Caitlin Kelleher and Randy Pausch. 2005. Lowering the Barriers to Program-
ming: A Taxonomy of Programming Environments and Languages for Novice
Programmers. ACM Comput. Surv. 37, 2 (June 2005), 83-137. https://doi.org/10.
1145/1089733.1089734

Brian W. Kernighan. 2017. Understanding the Digital World. Princeton University
Press, 41 Williams Street, Princeton, New Jersey, 08540.

Richard Kick and Frances P. Trees. 2015. AP CS Principles: Engaging, Challenging,
and Rewarding. ACM Inroads 6, 1 (Feb. 2015), 42—-45. https://doi.org/10.1145/
2710672

Chee Sern Lai, Kahirol Mohd Salleh, Nor Lisa Sulaiman, Mimi Mohaffyza Mo-
hamad, and Jailani Md Yunos. 2014. The effects of worked example and problem

[22]

[23

[24

[25]

Iy
S

[27

[28

[29

%
=

(31]

[32

@
&

[34

[35

[36

(37]

(38]
(39]

[40]

[41]

solving on learning performance and cognitive load. In 4th Shanghai International
Conference on Social Science 2014. 131-143.

James Lang. 2009. Choosing and Using Textbooks. https://www.chronicle.com/
article/ChoosingUsing-Textbooks/44820

Katherine Long. 2014. UW maxed out on computer-science space.

The Seattle Times (2014). https://www.seattletimes.com/seattle-news/
uw-maxed-out-on-computer-science-space/

Katherine Long. 2016. Demand for computer science
forces Washington colleges to ramp up. The Seattle Times
(2016). https://www.seattletimes.com/seattle-news/education/

with-surge-in-computer-science-majors-state- colleges-struggle-to-keep-pace/
Tanya Markow, Eugene Ressler, and Jean Blair. 2006. Catch That Speeding Turtle:
Latching Onto Fun Graphics in CS1. In Proceedings of the 2006 Annual ACM
SIGAda International Conference on Ada (SIGAda "06). ACM, New York, NY, USA,
29-34. https://doi.org/10.1145/1185642.1185648

Brad Miller and David Ranum. 2014. Runestone Interactive: Tools for Creat-
ing Interactive Course Materials. In Proceedings of the First ACM Conference
on Learning @ Scale Conference (L@S ’14). ACM, New York, NY, USA, 213-214.
https://doi.org/10.1145/2556325.2567887

Bradley N. Miller and David L. Ranum. 2012. Beyond PDF and ePub: Toward
an Interactive Textbook. In Proceedings of the 17th ACM Annual Conference on
Innovation and Technology in Computer Science Education (ITiCSE ’12). ACM, New
York, NY, USA, 150-155. https://doi.org/10.1145/2325296.2325335

Ralph Morelli, Chinma Uche, Pauline Lake, and Lawrence Baldwin. 2015. Ana-
lyzing Year One of a CS Principles PD Project. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education (SIGCSE ’15). ACM, New
York, NY, USA, 368-373. https://doi.org/10.1145/2676723.2677265

Roxana Moreno. 2004. Decreasing Cognitive Load for Novice Students: Ef-
fects of Explanatory versus Corrective Feedback in Discovery-Based Multime-
dia. Instructional Science 32, 1 (01 Jan 2004), 99-113. https://doi.org/10.1023/B:
TRUC.0000021811.66966.1d

Roxana Moreno, Martin Reisslein, and Gamze Ozogul. 2009. Optimizing
Worked-Example Instruction in Electrical Engineering: The Role of Fading
and Feedback during Problem-Solving Practice. Journal of Engineering
Education 98, 1 (Jan 2009), 83-92. https://doi.org/10.1002/j.2168-9830.
2009.th01007.x arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.2168-
9830.2009.tb01007.x

Andrew Petersen, Michelle Craig, and Daniel Zingaro. 2011. Reviewing CS1
Exam Question Content. In Proceedings of the 42Nd ACM Technical Symposium
on Computer Science Education (SIGCSE ’11). ACM, New York, NY, USA, 631-636.
https://doi.org/10.1145/1953163.1953340

Leo Porter and Daniel Zingaro. 2014. Importance of Early Performance in CS1:
Two Conflicting Assessment Stories. In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education (SIGCSE '14). ACM, New York, NY,
USA, 295-300. https://doi.org/10.1145/2538862.2538912

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and Yasmin Kafai. 2009. Scratch: Programming for All. Commun.
ACM 52, 11 (Nov. 2009), 60-67. https://doi.org/10.1145/1592761.1592779
Anthony Robins. 2010. Learning edge momentum: a new account of outcomes
in CS1. Computer Science Education 20, 1 (2010), 37-71. https://doi.org/10.1080/
08993401003612167

Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
Teaching Programming: A Review and Discussion. Computer Science Ed-
ucation 13, 2 (2003), 137-172. https://doi.org/10.1076/csed.13.2.137.14200
arXiv:https://doi.org/10.1076/csed.13.2.137.14200

Hamzeh Roumani. 2006. Practice What You Preach: Full Separation of Concerns
in CS1/CS2. In Proceedings of the 37th SIGCSE Technical Symposium on Computer
Science Education (SIGCSE '06). ACM, New York, NY, USA, 491-494. https:
//doi.org/10.1145/1121341.1121495

John R Savery. 2006. Overview of problem-based learning: Definitions and
distinctions. Interdisciplinary Journal of Problem-based Learning 1, 1 (2006), 3.
Megan Smith. 2016. Computer Science For All. https://goo.gl/F96bYV

Elliot Soloway. 1993. Should We Teach Students to Program? Commun. ACM 36,
10 (Oct. 1993), 21-24. https://doi.org/10.1145/163430.164061

J. Sorva. 2010. Reflections on threshold concepts in computer programming
and beyond. Proceedings of the 10th Koli Calling International Conference on
Computing Education Research (2010).

Tamara Van Gog, Fred Paas, and Jeroen JG Van Merriénboer. 2004. Process-
oriented worked examples: Improving transfer performance through enhanced
understanding. Instructional Science 32, 1-2 (2004), 83-98.

https://doi.org/10.1145/1029533.1029598
https://doi.org/10.1080/87567555.2010.509376
https://doi.org/10.1080/87567555.2010.509376
http://arxiv.org/abs/https://doi.org/10.1080/87567555.2010.509376
https://apscore.collegeboard.org/scores/about-ap-scores/score-distributions//
https://apscore.collegeboard.org/scores/about-ap-scores/score-distributions//
https://doi.org/10.1002/(SICI)1099-0720(199604)10:2<151::AID-ACP380>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-0720(199604)10:2<151::AID-ACP380>3.0.CO;2-U
https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course-and-exam-description.pdf?course=ap-computer-science-principles
https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course-and-exam-description.pdf?course=ap-computer-science-principles
https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course-and-exam-description.pdf?course=ap-computer-science-principles
https://doi.org/10.1145/1138403.1138432
https://doi.org/10.1145/1138403.1138432
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=505359
https://doi.org/10.1145/1168812.1168841
http://dl.acm.org/citation.cfm?id=1968521.1968529
http://dl.acm.org/citation.cfm?id=1968521.1968529
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/961511.961542
https://doi.org/10.1145/961511.961542
https://doi.org/10.1145/1378704.1378713
https://doi.org/10.1145/505248.505261
https://doi.org/10.1145/505248.505261
https://doi.org/10.1076/0899-3408(200008)10:2;1-C;FT109
http://arxiv.org/abs/https://doi.org/10.1076/0899-3408(200008)10:2;1-C;FT109
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/2710672
https://doi.org/10.1145/2710672
https://www.chronicle.com/article/ChoosingUsing-Textbooks/44820
https://www.chronicle.com/article/ChoosingUsing-Textbooks/44820
https://www.seattletimes.com/seattle-news/uw-maxed-out-on-computer-science-space/
https://www.seattletimes.com/seattle-news/uw-maxed-out-on-computer-science-space/
https://www.seattletimes.com/seattle-news/education/with-surge-in-computer-science-majors-state-colleges-struggle-to-keep-pace/
https://www.seattletimes.com/seattle-news/education/with-surge-in-computer-science-majors-state-colleges-struggle-to-keep-pace/
https://doi.org/10.1145/1185642.1185648
https://doi.org/10.1145/2556325.2567887
https://doi.org/10.1145/2325296.2325335
https://doi.org/10.1145/2676723.2677265
https://doi.org/10.1023/B:TRUC.0000021811.66966.1d
https://doi.org/10.1023/B:TRUC.0000021811.66966.1d
https://doi.org/10.1002/j.2168-9830.2009.tb01007.x
https://doi.org/10.1002/j.2168-9830.2009.tb01007.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.2168-9830.2009.tb01007.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.2168-9830.2009.tb01007.x
https://doi.org/10.1145/1953163.1953340
https://doi.org/10.1145/2538862.2538912
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1080/08993401003612167
https://doi.org/10.1080/08993401003612167
https://doi.org/10.1076/csed.13.2.137.14200
http://arxiv.org/abs/https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1145/1121341.1121495
https://doi.org/10.1145/1121341.1121495
https://goo.gl/F96bYV
https://doi.org/10.1145/163430.164061

	Punch Cards to Python: A Case Study of a CS0 Core Course
	Recommended Citation

	Abstract
	1 Introduction
	2 Background
	2.1 History of CS0 at Our Institution
	2.2 AP CS Principles Overview
	2.3 CS0 vs CS1 Expectations
	2.4 Relevant Pedagogical Research
	2.5 General Purpose Languages
	2.6 Historical CS1 Failure Rates

	3 Course Description
	3.1 Key Decisions
	3.2 Transitioning to Web-Based Instruction

	4 Student Feedback Assessment
	4.1 Textbook Utility
	4.2 Motivation
	4.3 Problem Solving Using Programming or Technology

	5 Lessons Learned
	6 Conclusion
	Acknowledgments
	References

