
United States Military Academy United States Military Academy 

USMA Digital Commons USMA Digital Commons 

West Point Research Papers 

Winter 1-29-2021 

Performance of Single Board Computers for Vision Processing Performance of Single Board Computers for Vision Processing 

Curtis Manore CDT'21 
United States Military Academy 

Pratheek Manjunath 
United States Military Academy, pratheek.manjunath@westpoint.edu 

Dominic Larkin 
United States Military Academy 

Follow this and additional works at: https://digitalcommons.usmalibrary.org/usma_research_papers 

 Part of the Computational Engineering Commons, and the Other Computer Engineering Commons 

Recommended Citation Recommended Citation 
Manore, Curtis CDT'21; Manjunath, Pratheek; and Larkin, Dominic, "Performance of Single Board 
Computers for Vision Processing" (2021). West Point Research Papers. 378. 
https://digitalcommons.usmalibrary.org/usma_research_papers/378 

This Conference Proceeding is brought to you for free and open access by USMA Digital Commons. It has been 
accepted for inclusion in West Point Research Papers by an authorized administrator of USMA Digital Commons. 
For more information, please contact thomas.lynch@westpoint.edu. 

https://digitalcommons.usmalibrary.org/
https://digitalcommons.usmalibrary.org/usma_research_papers
https://digitalcommons.usmalibrary.org/usma_research_papers?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F378&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F378&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F378&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usmalibrary.org/usma_research_papers/378?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F378&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thomas.lynch@westpoint.edu








Fig. 3: Kimera-VIO Output with Features

code: [https://github.com/MIT-SPARK/Kimera-VIO]

V. TESTING AND METHODOLOGY

Three VIO algorithms were implemented on the two test
Odroids: MSCKF, VINS-Mono, and Kimera-VIO. Each algo-
rithm on both SBCs were subjected to the same test scenario: a
rosbag file obtained from the EuRoC dataset [19]. The file used
was a 180-second video recording captured in the Machine
Hall of ETH Zurich where sUAS are often tested. Performance
was measured on the easy, medium, and hard datasets and
results obtained are presented in the following section VI. The
configuration parameters of the algorithms were at their default
settings so as to focus solely on the SBC’s computational
abilities without the results being skewed by the algorithms’
performance. The following parameters were monitored and
analyzed for each algorithm and SBC:

1) Build time: This measures the amount of time the
algorithm takes to compile successfully on the given platforms.
With different computational power and processor architecture,
build times will differ between SBCs. Lower build times
indicate the ability to quickly reproduce the algorithm on
different computing devices.

2) CPU load: This is a measure of the fraction of total
CPU cycles needed to run a process. A lower CPU load for a
VIO algorithm suggests a lighter algorithm or a more capable
CPU. Here, CPU load is measured in percentage relative to
the SBC itself.

3) Memory utilization: This metric shows the amount of
memory allocated to a process from the total memory available
on the device. Higher memory utilization signifies either a
large demand from a process or insufficient memory available
on the device itself. As shown in equation 1, this is a
measure relative to each device. If a VIO algorithm has “good”
memory utilization, it must have a consistently low percentage
utilization over the duration that the algorithm runs.

% utilized =
memory used per process
total memory on device

� 100 (1)

4) Temperature: Rising temperature of CPUs is a direct
side-effect of constant computational load. The Odroid XU4
has an active heatsink whereas the Odroid H2+ has a passive
heatsink. SBCs, like most computers, tend to exhibit erratic

behavior and eventually shutdown when overheated. Temper-
ature was logged to study the increase in heat generated when
running VIO algorithms.

These measurements were taken using a tool called Glances
for real-time system monitoring and psutil Python library to
log the performance metrics. Figure 4 shows the Graphical
User Interface of Glances.

Fig. 4: Glances System Monitoring Tool

VI. RESULTS

TABLE II: Algorithm Build Times

Algorithm Odroid XU4 Odroid H2+
MSCKF 5 min 3 min

VINS-Mono 30 min 19 min
Kimera-VIO > 24 hours 1 hour

TABLE III: Mean CPU Load and Memory Utilization

Algorithm Odroid XU4 Odroid H2+
CPU % Mem % CPU % Mem %

MSCKF 215.92 6.10 50.81 0.421
VINS-Mono 198.53 59.39 61.46 0.394
Kimera-VIO 338.59 49.28 201.27 0.908

A. Odroid XU4 Performance

Code for MSCKF and VINS-Mono took under an hour to
build on the XU4, as shown in Table II. However, Kimera-VIO
took over a day to compile.

Figures 5a, 7a, and 9a illustrate the CPU load for MSCKF,
VINS-Mono, and Kimera-VIO, respectively, over the time
that the EuRoC scenario is running. Memory utilization for
the Odroid XU4 is shown in Figures 5b, 7b, and 9b. Table
III shows the mean and median CPU load and memory
utilization for running the vision processing algorithms on the
EuRoC MH01 scenario. If the algorithm required more than
one process to run the algorithm, such as MSCKF’s Image
Processor and Feature Tracker processes, the mean CPU load
was taken from the most computationally intensive process
and the memory utilization was summed across all processes.



(a) Odroid XU4 MSCKF CPU Load (b) Odroid XU4 MSCKF Memory Utilization

Fig. 5: MSCKF on Odroid XU4

(a) Odroid H2+ MSCKF CPU Load (b) Odroid H2+ MSCKF Memory Utilization

Fig. 6: MSCKF on Odroid H2+

(a) Odroid XU4 VINS-Mono CPU Load (b) Odroid XU4 VINS-Mono Memory Utilization

Fig. 7: VINS-Mono on Odroid XU4

(a) Odroid H2+ VINS-Mono CPU Load (b) Odroid H2+ VINS-Mono Memory Utilization

Fig. 8: VINS-Mono on Odroid H2+



(a) Odroid XU4 Kimera-VIO CPU Load (b) Odroid XU4 Kimera-VIO Memory Utilization

Fig. 9: Kimera on Odroid XU4

(a) Odroid H2+ Kimera-VIO CPU Load (b) Odroid H2+ Kimera-VIO Memory Utilization

Fig. 10: Kimera on Odroid H2+

The Odroid XU4 with ARM architecture was able to computa-
tionally run the MSCKF and VINS-Mono algorithms with the
EuRoC dataset successfully. However, VINS-Mono failed to
output a pose estimation—a crucial output for VIO algorithms.
This was due to the non-linear equation solver that VINS-
Mono used: Ceres [20]. The Ceres Solver does not handle
large, non-linear optimization problems well with a 32 bit
ARM operating system. Since the Odroid XU4 only had 2GB
of RAM, Ceres struggled solving the pose estimation problem
for VINS-Mono.

For Kimera-VIO, CPU load exceeded 400 percent, and the
memory utilization in Figure 9b increased linearly rather than
remaining constant. This led to buffer overflow, increasing
latency in image frames and a significant lag in pose esti-
mation. When memory utilization topped 80 percent, a large
drop in the CPU load occurred and the algorithm crashed. The
authors believe that the Odroid XU4 cannot handle Kimera-
VIO’s complexity and that Kimera-VIO is better suited for a
platform that has more RAM and a faster processor.

B. Odroid H2+ Performance

Figures 6a, 8a, and 10a show charts of CPU load for the
algorithms running on the Odroid H2+ platform. Since the
H2+ has 32GB of RAM, 5 times what the Odroid XU4
has, the amount of memory utilized is much lower across
all algorithms, shown in Figures 6b, 8b, and 10b. This leads
to more stable performance for the algorithms. All three

algorithms were able to generate a pose estimation, greatly
benefiting from its x86 Architecture, faster processor, and
larger RAM capabilities. Unlike on the XU4, VINS-Mono’s
Ceres Solver worked successfully on th H2+ to generate a pose
estimate for the algorithm, and Kimera-VIO did not have any
memory utilization errors.

Table IV addresses the temperature concerns with the
Odroid H2+’s passive heatsink. MSCKF ran noticeably cooler
than the other two algorithms. MSCKF is the oldest and least
computationally intensive algorithm, so its lower temperature
is reasonable. VINS-Mono and Kimera-VIO both ran above 50
degrees Celsius. While this is noticeably warm for a passive
heatsink, it is still considered a safe operating condition.

TABLE IV: Temperature for Odroid H2+

Algorithm Mean Median
MSCKF 36.7 °C 37 °C

VINS-Mono 55.0 °C 56 °C
Kimera-VIO 52.9 °C 53 °C

VII. CONCLUSIONS

Across the EuRoC scenarios of easy, medium, and hard,
the VIO algorithms tested did not require greater processing
power to navigate harder environments. However, the Odroid
XU4 performed much worse than the Odroid H2+ on vision
processing. Real-time performance aside, the Odroid H2+’s



64-bit architecture led to faster build time prior to execution.
The authors make the following inferences about single board
computers for VIO:

1) The amount of RAM greatly improves the ability of the
SBC to conduct vision processing. Table III shows the
decrease in total RAM used between the Odroid XU4
and Odroid H2+.

2) 64-bit architecture works better for VIO. The 32-bit XU4
platform caused issues with dependencies and limited
computing capabilities, and the 64-bit H2+ did not have
these issues when building the VIO algorithms as shown
in Table II.

3) The x86 H2+ worked better than the ARM XU4. Most
algorithms worked with x86 architecture by default since
it is what most modern computers use today. On the
Odroid XU4 with ARM architecture, VINS-Mono failed
to generate a pose estimate–one of the essential outputs
of the algorithm. The authors believe that the 32-bit
ARM architecture was not able to handle the non-linear
optimization solver. However, 64-bit ARM is still a
popular choice for vision processing, such as Kimera-
VIO’s preference to use a Tegra TX2 platform.

This research will continue to scale in complexity and realism.
Below are two areas in which there is interest to evolve this
project in the near future:

1) Hardware Implementation - Test and validate VINS-
Mono and Kimera-VIO using the Odroid H2+ on a
physical quadcopter. Both VINS-Mono and Kimera-VIO
are updated regularly, so they still hold relevancy in
visual processing today.

2) Sensor complexity - Test and validate Odroid H2+
ability to handle complex sensors like a 2D-LiDAR or
a depth camera for VIO. VINS-Mono uses a simple
webcam for monocular vision whereas Kimera-VIO uses
a stereo camera. The accuracy of the pose estimation
for the different sensor inputs will prove an interesting
research discussion for future work.

VIII. ACKNOWLEDGMENTS

The authors would like to thank Christopher Korpela and
the Robotics Research Center at West Point for providing
technical expertise and equipment, Luca Carlone from MIT
SPARK Laboratory for advice on Kimera-VIO.

REFERENCES

[1] S. J. Johnston, M. Apetroaie-Cristea, M. Scott, and S. J. Cox, “Appli-
cability of commodity, low cost, single board computers for internet of
things devices,” in 2016 IEEE 3rd World Forum on Internet of Things
(WF-IoT), 2016, pp. 141–146.

[2] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Pro-
topapadakis, “Deep Learning for Computer Vision: A Brief
Review,” Feb. 2018, iSSN: 1687-5265. [Online]. Available:
https://www.hindawi.com/journals/cin/2018/7068349/

[3] A. HajiRassouliha, A. J. Taberner, M. P. Nash, and
P. M. F. Nielsen, “Suitability of recent hardware accelerators
(DSPs, FPGAs, and GPUs) for computer vision and image
processing algorithms,” Signal Processing: Image Communication,
vol. 68, pp. 101–119, Oct. 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0923596518303606

[4] A. Badshah, N. Islam, D. Shahzad, B. Jan, H. Farman, M. Khan,
G. Jeon, and A. Ahmad, “Vehicle navigation in GPS denied environment
for smart cities using vision sensors,” Computers, Environment and
Urban Systems, vol. 77, p. 101281, Sep. 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0198971517304489

[5] A. I. Mourikis and S. I. Roumeliotis, “A Multi-State Constraint
Kalman Filter for Vision-aided Inertial Navigation,” in Proceedings
2007 IEEE International Conference on Robotics and Automation.
Rome, Italy: IEEE, Apr. 2007, pp. 3565–3572, iSSN: 1050-4729.
[Online]. Available: http://ieeexplore.ieee.org/document/4209642/

[6] Z. Zhang, A. Suleiman, L. Carlone, V. Sze, and S. Karaman,
“Visual-Inertial Odometry on Chip: An Algorithm-and-Hardware Co-
design Approach,” in Robotics: Science and Systems XIII. Robotics:
Science and Systems Foundation, Jul. 2017. [Online]. Available:
http://www.roboticsproceedings.org/rss13/p28.pdf

[7] N. Alee, M. Rahman, and R. B. Ahmad, “Performance comparison of
single board computer: A case study of kernel on arm architecture,”
in 2011 6th International Conference on Computer Science Education
(ICCSE), 2011, pp. 521–524.

[8] A. Adnan, Z. Tahir, and M. A. Asis, “Performance evaluation of
single board computer for hadoop distributed file system (hdfs),” in
2019 International Conference on Information and Communications
Technology (ICOIACT), 2019, pp. 624–627.

[9] G. Lencse and S. Répás, “Method for benchmarking single board
computers for building a mini supercomputer for simulation of telecom-
munication systems,” in 2015 38th International Conference on Telecom-
munications and Signal Processing (TSP), Jul. 2015, pp. 246–251.

[10] P. J. Basford, S. J. Johnston, C. S. Perkins, T. Garnock-
Jones, F. P. Tso, D. Pezaros, R. D. Mullins, E. Yoneki,
J. Singer, and S. J. Cox, “Performance analysis of single
board computer clusters,” Future Generation Computer Systems,
vol. 102, pp. 278–291, Jan. 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X1833142X

[11] I. Zamalloa, R. Kojcev, A. Hernández, I. Muguruza, L. Usategui,
A. Bilbao, and V. Mayoral, “Dissecting Robotics - historical overview
and future perspectives,” arXiv:1704.08617 [cs], Apr. 2017, arXiv:
1704.08617. [Online]. Available: http://arxiv.org/abs/1704.08617

[12] D. F. Tello Gamarra, A. Piccinini Legg, M. A. de Souza Leite Cuadros,
and E. Santos da Silva, “Sensory integration of a mobile robot using the
embedded system odroid-xu4 and ros,” in 2019 Latin American Robotics
Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR) and
2019 Workshop on Robotics in Education (WRE), 2019, pp. 198–203.

[13] U. L. ©, Benchmarks 3DMark, 2020 (accessed December 24, 2020).
[Online]. Available: https://support.benchmarks.ul.com/en/support/home

[14] M. Long, Best SBCs for 2020, 2020 (accessed December 25, 2020).
[Online]. Available: https://www.electromaker.io/blog/article/best-sbc-
for-ai-single-board-computer-for-artificial-intelligence

[15] J. Delmerico and D. Scaramuzza, “A Benchmark Comparison of
Monocular Visual-Inertial Odometry Algorithms for Flying Robots,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA). Brisbane, QLD: IEEE, May 2018, pp. 2502–2509. [Online].
Available: https://ieeexplore.ieee.org/document/8460664/

[16] A. Z. Zhu, N. Atanasov, and K. Daniilidis, “Event-Based Visual Inertial
Odometry,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Honolulu, HI: IEEE, Jul. 2017, pp. 5816–5824.
[Online]. Available: http://ieeexplore.ieee.org/document/8100099/

[17] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and Versatile
Monocular Visual-Inertial State Estimator,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 1004–1020, Aug. 2018, arXiv: 1708.03852.
[Online]. Available: http://arxiv.org/abs/1708.03852

[18] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an
Open-Source Library for Real-Time Metric-Semantic Localization and
Mapping,” arXiv:1910.02490 [cs], Mar. 2020, arXiv: 1910.02490.
[Online]. Available: http://arxiv.org/abs/1910.02490

[19] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,
M. Achtelik, and R. Siegwart, “The EuRoC micro aerial vehicle
datasets,” The International Journal of Robotics Research, vol. 35, Jan.
2016.

[20] S. Agarwal, K. Mierle, and Others, “Ceres solver,” http://ceres-
solver.org.


