
Title
A Dynamic Ensemble for Estimating State-of-Charge of Interchangeable Robot Batteries
Contributing USMA Research Unit(s)
Electrical Engineering and Computer Science, Robotics Research Center
Document Type
Conference Proceeding
Publication Date
Fall 10-2017
Abstract
This paper presents a unique machine learning model that estimates battery state-of-charge (SOC) for robotic applications. Unlike earlier approaches, this study investigates the problem of estimating SOC for several interchangeable batteries that can be used to power a robot. Robots commonly have a reserve pool of batteries available to be swapped for the purpose of extending operational time, but swapping batteries complicates the SOC estimation problem due to parameter variation. The proposed state-based ensemble is novel in that it exceeds the accuracy of traditional ensemble methods by dynamically changing estimation algorithms and predictors based on a preliminary (i.e., rough) state estimate of the battery. Experimental results show statistically significant improvement, on average, of 4 percent for our proposed state-based ensemble.
USMA Center/Institute Affiliation
Robotics Research Center
Recommended Citation
S. J. Miller et al., "A dynamic ensemble for estimating state-of-charge of interchangeable robot batteries," 2017 IEEE MIT Undergraduate Research Technology Conference (URTC), Cambridge, MA, 2017, pp. 1-5. doi: 10.1109/URTC.2017.8284193
Record links to items hosted by external providers may require fee for full-text.