Title
Transfer Learning for Early Detection and Classification of Amblyopia
Contributing USMA Research Unit(s)
Electrical Engineering and Computer Science
Publication Date
9-6-2019
Publication Title
SPIE Optical Engineering + Applications 2019
Document Type
Conference Proceeding
Abstract
Amblyopia, also known as lazy eye, affects 2-3% of children. If ambylopia is not treated successfully during early childhood, it will persist into adulthood. One of the causes of amblyopia is strabismus, which is a misalignment of the eyes. In this paper, we have investigated several neural network architectures as universal feature extractors for two tasks: (1) classification of eye images to detect strabismus, and (2) detecting the need to be referred to a specialist. We have examined several state-of-the-art backbone architectures for feature extraction, as well as several classifier frameworks. Through these experiments, we observed that VGG19 and random forest classifier offer the overall best performance for both classification tasks. We also observed that when top-performing architectures are fused together, even with simple rules such as a median filter, overall performance improves.
Recommended Citation
Marc Bosch, Christopher M. Gifford, David P. Harvie, Gerhard W. Cibis, Arvin Agah, "Transfer learning for early detection and classification of amblyopia," Proc. SPIE 11137, Applications of Digital Image Processing XLII, 1113702 (6 September 2019); https://doi.org/10.1117/12.2523524
Record links to items hosted by external providers may require fee for full-text.