Contributing USMA Research Unit(s)
Center for Innovation and Engineering, Civil and Mechanical Engineering
Publication Date
11-4-2020
Publication Title
2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)
Document Type
Conference Proceeding
Abstract
This paper presents a cooperative aerial search-and-localization framework for applications where knowledge about the target of concern is minimal. The proposed framework leverages the sweeping oscillatory properties of Lissajous curves to improve an agent's chances of encountering a target. To accurately estimate the states of cooperative search drones, a discrete-time linear Lissajous motion model approximation is presented in such a way that uncertainty in physical model parameters can be accounted for. These uncertainties are propagated through estimation formulas to improve both agent and target localization relative to a static base station. Numerous experiments conducted in a physics-driven simulation environment show that Lissajous search patterns are a logical and effective substitute for many existing search pattern standards. Furthermore, parametric Monte Carlo simulation studies validate the proposed estimation framework as a more accurate target localizer than other traditional methods which do not account for inaccuracy in the motion model. These techniques hold promise for both static and dynamic target search-and-localization scenarios, allowing for robust estimation by eliminating the need for knowledge of low-level control input to search agents.
First Page
233
Recommended Citation
J. J. Steckenrider, S. Leamy and T. Furukawa, "Cooperative Aerial Search and Localization Using Lissajous Patterns," 2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Abu Dhabi, UAE, 2020, pp. 233-240, doi: https://doi.org/10.1109/SSRR50563.2020.9292577
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Included in
Acoustics, Dynamics, and Controls Commons, Aeronautical Vehicles Commons, Aviation Safety and Security Commons, Navigation, Guidance, Control and Dynamics Commons, Robotics Commons