Title
Probabilistic Observation Model Correction Using Non-Gaussian Belief Fusion
Contributing USMA Research Unit(s)
Center for Innovation and Engineering
Publication Date
11-2021
Publication Title
Information Fusion
Document Type
Article
Abstract
This paper presents a framework for state estimation which tolerates uncertainty in observation model parameters by (1) incorporating this uncertainty in state observation, and (2) correcting model parameters to improve future state observations. The first objective is met by an uncertainty propagation approach, while the second is achieved by gradient-descent optimization. The novel framework allows state estimates to be represented by non-Gaussian probability distribution functions. By correcting observation model parameters, estimation performance is enhanced since the accuracy of observations is increased. Monte Carlo simulation experiments validate the efficacy of the proposed approach in comparison with conventional estimation techniques, showing that as model parameters converge to ground-truth over time, state estimation correspondingly improves when compared to a static model estimate. Because observation models cannot be known with perfect accuracy and existing approaches do not address parametric uncertainties in non-Gaussian estimation, this work has both novelty and usefulness in most state estimation contexts.
First Page
16
Recommended Citation
J. Josiah Steckenrider, Tomonari Furukawa, Probabilistic observation model correction using non-Gaussian belief fusion, Information Fusion, Volume 75, 2021, Pages 16-27. DOI: https://doi.org/10.1016/j.inffus.2021.04.002
Record links to items hosted by external providers may require fee for full-text.