Title
Focused Ion Beam Nanopatterning for Optoelectronic Device Fabrication
Contributing USMA Research Unit(s)
Electrical Engineering and Computer Science
Publication Date
11-2005
Publication Title
IEEE Journal of Selected Topics in Quantum Electronics ( Volume: 11, Issue: 6, Nov.-Dec. 2005)
Document Type
Article
Abstract
Recent photonic device structures, including distributed Bragg reflectors (DBRs), one-dimensional (1-D) or two-dimensional (2-D) photonic crystals, and surface plasmon devices, often require nanoscale lithography techniques for their device fabrication. Focused ion beam (FIB) etching has been used as a nanolithographic tool for the creation of these nanostructures. We report the use of FIB etching as a lithographic tool that enables sub-100-nm resolution. The FIB patterning of nanoscale holes on an epitaxially grown GaAs layer is characterized. To eliminate redeposition of sputtered materials during FIB patterning, we have developed a process using a dielectric mask and subsequent dry etching. This approach creates patterns with vertical and smooth sidewalls. A thin titanium layer can be deposited on the dielectric layer to avoid surface charging effects during the FIB process. This FIB nanopatterning technique can be applied to fabricate optoelectronic devices, and we show examples of 1-D gratings in optical fibers for sensing applications, photonic crystal vertical cavity lasers, and photonic crystal defect lasers.
Recommended Citation
Kim, Yong-Kwan; Danner, A. J.; Raftery, James J. Jr.; and Choquette, Kent D., "Focused Ion Beam Nanopatterning for Optoelectronic Device Fabrication" (2005). West Point Research Papers. 717.
https://digitalcommons.usmalibrary.org/usma_research_papers/717
Record links to items hosted by external providers may require fee for full-text.