Title
Smoother Robot Control from Convolutional Neural Networks Using Fuzzy Logic
Contributing USMA Research Unit(s)
Robotics Research Center, Electrical Engineering and Computer Science
Publication Date
Winter 12-17-2018
Publication Title
2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)
Document Type
Conference Proceeding
Abstract
A recent development in robotic control systems is the use of classification neural networks to produce discrete control signals. While the output of the neural network can be mapped directly to control signals, the possible control decisions are generally limited to the number of output classes. Fortunately, the neural network is also capable of producing a set of probabilities that a given input belongs to each class. This additional information can be used to expand the range of possible control signals. In this experiment, a fuzzy control system was applied to a robot that previously implemented a navigation-by-classification approach. The results of the experiment showed that the network is indeed capable of providing extra information in its probability designations, and this information can be exploited to smooth the discrete outputs of the system using fuzzy logic. In the case of the robot studied, the fuzzy control system outperformed the original discrete control system in navigating new courses. The robot's movements also appeared smoother when compared to the original solution. Thus, the additional information gained from the probabilities enabled the system to be more generalized and robust.
First Page
695
Recommended Citation
W. Born and C. Lowrance, "Smoother Robot Control from Convolutional Neural Networks Using Fuzzy Logic," 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 2018, pp. 695-700. doi: 10.1109/ICMLA.2018.00110
Record links to items hosted by external providers may require fee for full-text.