Title

Translating digital anthropometry measurements obtained from different 3D body image scanners

Contributing USMA Research Unit(s)

Human Performance Lab, Mathematical Sciences, Physical Education

Publication Date

Spring 5-10-2023

Publication Title

European Journal of Clinical Nutrition

Document Type

Article

Abstract

Background

Body image scanners are used in industry and research to reliably provide a wealth of anthropometric measurements within seconds. The demonstrated utility of the scanners drives the current proliferation of more commercially available devices that rely on their own reference body sites and proprietary algorithms to output anthropometric measurements. Since each scanner relies on its own algorithms, measurements obtained from different scanners cannot directly be combined or compared.

Objectives

To develop mathematical models that translate anthropometric measurements between the three popular commercially available scanners.

Methods

A unique database that contained 3D scanner measurements in the same individuals from three different scanners (Styku, Human Solutions, and Fit3D) was used to develop linear regression models that translate anthropometric measurements between each scanner. A limits of agreement analysis was performed between Fit3D and Styku against Human Solutions measurements and the coefficient of determination, bias, and 95% confidence interval were calculated. The models were then applied to normalized scanner data from four different studies to compare the results of a k-means cluster analysis between studies. A scree plot was used to determine the optimal number of clusters derived from each study.

Results

Correlations ranged between R2 = 0.63 (Styku and Human Solutions mid-thigh circumference) to R2 = 0.97 (Human Solutions and Fit3D neck circumference). In general, Fit3D had better agreement with Human Solutions compared to Styku. The widest disagreement was found in chest circumference (Fit3D (bias = 2.30, 95% CI = [−3.83, 8.43]) and Styku (bias = −5.60, 95% CI = [−10.98, −0.22]). The optimal number of body shape clusters in each of the four studies was consistently 5.

Conclusions

The newly developed models that translate measurements between the scanners Styku and Fit3D to predict Human Solutions measurements make it possible to standardize data between scanners allowing for data pooling and comparison.

Streaming Media

This document is currently not available here.

Share

COinS